{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"Collapsed": "false"
},
"source": [
"# Solution 2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```{hint} \n",
"Execute the notebook on the training platform >>\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"## About"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"> Let us have a closer look at the forecast data from both models for one observation station in Tenerife (Canary Islands). Let us plot the time-series of the CAMS and MONARCH forecasts together in one plot.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tasks"
]
},
{
"cell_type": "markdown",
"metadata": {
"tags": []
},
"source": [
"**1. Download and animate the CAMS global forecast for 21 Feb 2020**\n",
" * Download the CAMS global atmospheric composition forecast for 21 February 2020, with the following specifications:\n",
" > Variable on single levels: `Dust aerosol optical depth at 550 nm`
\n",
" > Date (Start and end): `2020-02-21`
\n",
" > Time: `12:00`
\n",
" > Leadtime hour: every three hours from `0 to 90`
\n",
" > Type: `Forecast`
\n",
" > Restricted area: `N: 67, W: -30, E: 71, S: -3`
\n",
" > Format: `Zipped netCDF`
\n",
" * **Hint** \n",
" * [CAMS global atmospheric composition forecasts - Example notebook](./cams_global.ipynb)\n",
" * Data access\n",
"\n",
"**2. Get the coordinates of the AERONET station *Santa Cruz, Tenerife***\n",
" * **Hint**\n",
" * You can see an overview of all available AERONET Site Names here\n",
"\n",
"**3. Select the time-series for CAMS global atmospheric composition forecasts for Santa Cruz, Tenerife**\n",
" * **Hint**\n",
" * With the xarray function `sel()` and keyword argument `method='nearest'` you can select data based on coordinate information\n",
" * We also recommend you to transform your xarray.DataArray into a pandas.DataFrame with the function `to_dataframe()` and save it as `csv` with the function `to_csv()`\n",
"\n",
"**4. Load the MONARCH dust forecasts and select time-series for Santa Cruz, Tenerife**\n",
" * **Hint**\n",
" * With the xarray function `sel()` and keyword argument `method='nearest'` you can select data based on coordinate information\n",
" * We also recommend you to transform your xarray.DataArray into a pandas.DataFrame with the function `to_dataframe()` and save it as `csv` with the function `to_csv()`\n",
"\n",
"**5. Visualize both time-series of CAMS and MONARCH forecasts together in one plot**"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"
<xarray.Dataset>\n", "Dimensions: (longitude: 253, latitude: 176, time: 31)\n", "Coordinates:\n", " * longitude (longitude) float32 -30.0 -29.6 -29.2 -28.8 ... 70.0 70.4 70.8\n", " * latitude (latitude) float32 67.0 66.6 66.2 65.8 ... -1.8 -2.2 -2.6 -3.0\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-25T06:00:00\n", "Data variables:\n", " duaod550 (time, latitude, longitude) float32 ...\n", "Attributes:\n", " Conventions: CF-1.6\n", " history: 2021-11-02 14:50:00 GMT by grib_to_netcdf-2.23.0: /opt/ecmw...
array([-30. , -29.6, -29.2, ..., 70. , 70.4, 70.8], dtype=float32)
array([67. , 66.6, 66.2, 65.8, 65.4, 65. , 64.6, 64.2, 63.8, 63.4, 63. , 62.6,\n", " 62.2, 61.8, 61.4, 61. , 60.6, 60.2, 59.8, 59.4, 59. , 58.6, 58.2, 57.8,\n", " 57.4, 57. , 56.6, 56.2, 55.8, 55.4, 55. , 54.6, 54.2, 53.8, 53.4, 53. ,\n", " 52.6, 52.2, 51.8, 51.4, 51. , 50.6, 50.2, 49.8, 49.4, 49. , 48.6, 48.2,\n", " 47.8, 47.4, 47. , 46.6, 46.2, 45.8, 45.4, 45. , 44.6, 44.2, 43.8, 43.4,\n", " 43. , 42.6, 42.2, 41.8, 41.4, 41. , 40.6, 40.2, 39.8, 39.4, 39. , 38.6,\n", " 38.2, 37.8, 37.4, 37. , 36.6, 36.2, 35.8, 35.4, 35. , 34.6, 34.2, 33.8,\n", " 33.4, 33. , 32.6, 32.2, 31.8, 31.4, 31. , 30.6, 30.2, 29.8, 29.4, 29. ,\n", " 28.6, 28.2, 27.8, 27.4, 27. , 26.6, 26.2, 25.8, 25.4, 25. , 24.6, 24.2,\n", " 23.8, 23.4, 23. , 22.6, 22.2, 21.8, 21.4, 21. , 20.6, 20.2, 19.8, 19.4,\n", " 19. , 18.6, 18.2, 17.8, 17.4, 17. , 16.6, 16.2, 15.8, 15.4, 15. , 14.6,\n", " 14.2, 13.8, 13.4, 13. , 12.6, 12.2, 11.8, 11.4, 11. , 10.6, 10.2, 9.8,\n", " 9.4, 9. , 8.6, 8.2, 7.8, 7.4, 7. , 6.6, 6.2, 5.8, 5.4, 5. ,\n", " 4.6, 4.2, 3.8, 3.4, 3. , 2.6, 2.2, 1.8, 1.4, 1. , 0.6, 0.2,\n", " -0.2, -0.6, -1. , -1.4, -1.8, -2.2, -2.6, -3. ], dtype=float32)
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000', '2020-02-24T15:00:00.000000000',\n", " '2020-02-24T18:00:00.000000000', '2020-02-24T21:00:00.000000000',\n", " '2020-02-25T00:00:00.000000000', '2020-02-25T03:00:00.000000000',\n", " '2020-02-25T06:00:00.000000000'], dtype='datetime64[ns]')
[1380368 values with dtype=float32]
<xarray.DataArray 'duaod550' (time: 31, latitude: 176, longitude: 253)>\n", "[1380368 values with dtype=float32]\n", "Coordinates:\n", " * longitude (longitude) float32 -30.0 -29.6 -29.2 -28.8 ... 70.0 70.4 70.8\n", " * latitude (latitude) float32 67.0 66.6 66.2 65.8 ... -1.8 -2.2 -2.6 -3.0\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-25T06:00:00\n", "Attributes:\n", " units: ~\n", " long_name: Dust Aerosol Optical Depth at 550nm
[1380368 values with dtype=float32]
array([-30. , -29.6, -29.2, ..., 70. , 70.4, 70.8], dtype=float32)
array([67. , 66.6, 66.2, 65.8, 65.4, 65. , 64.6, 64.2, 63.8, 63.4, 63. , 62.6,\n", " 62.2, 61.8, 61.4, 61. , 60.6, 60.2, 59.8, 59.4, 59. , 58.6, 58.2, 57.8,\n", " 57.4, 57. , 56.6, 56.2, 55.8, 55.4, 55. , 54.6, 54.2, 53.8, 53.4, 53. ,\n", " 52.6, 52.2, 51.8, 51.4, 51. , 50.6, 50.2, 49.8, 49.4, 49. , 48.6, 48.2,\n", " 47.8, 47.4, 47. , 46.6, 46.2, 45.8, 45.4, 45. , 44.6, 44.2, 43.8, 43.4,\n", " 43. , 42.6, 42.2, 41.8, 41.4, 41. , 40.6, 40.2, 39.8, 39.4, 39. , 38.6,\n", " 38.2, 37.8, 37.4, 37. , 36.6, 36.2, 35.8, 35.4, 35. , 34.6, 34.2, 33.8,\n", " 33.4, 33. , 32.6, 32.2, 31.8, 31.4, 31. , 30.6, 30.2, 29.8, 29.4, 29. ,\n", " 28.6, 28.2, 27.8, 27.4, 27. , 26.6, 26.2, 25.8, 25.4, 25. , 24.6, 24.2,\n", " 23.8, 23.4, 23. , 22.6, 22.2, 21.8, 21.4, 21. , 20.6, 20.2, 19.8, 19.4,\n", " 19. , 18.6, 18.2, 17.8, 17.4, 17. , 16.6, 16.2, 15.8, 15.4, 15. , 14.6,\n", " 14.2, 13.8, 13.4, 13. , 12.6, 12.2, 11.8, 11.4, 11. , 10.6, 10.2, 9.8,\n", " 9.4, 9. , 8.6, 8.2, 7.8, 7.4, 7. , 6.6, 6.2, 5.8, 5.4, 5. ,\n", " 4.6, 4.2, 3.8, 3.4, 3. , 2.6, 2.2, 1.8, 1.4, 1. , 0.6, 0.2,\n", " -0.2, -0.6, -1. , -1.4, -1.8, -2.2, -2.6, -3. ], dtype=float32)
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000', '2020-02-24T15:00:00.000000000',\n", " '2020-02-24T18:00:00.000000000', '2020-02-24T21:00:00.000000000',\n", " '2020-02-25T00:00:00.000000000', '2020-02-25T03:00:00.000000000',\n", " '2020-02-25T06:00:00.000000000'], dtype='datetime64[ns]')
<xarray.DataArray 'duaod550' (time: 31)>\n", "array([5.676746e-04, 5.676746e-04, 1.460314e-03, 2.421856e-03, 5.305767e-03,\n", " 1.128006e-02, 8.077216e-02, 2.031391e-01, 3.358061e-01, 5.017774e-01,\n", " 5.811578e-01, 7.555066e-01, 1.102213e+00, 1.210434e+00, 1.024824e+00,\n", " 9.059588e-01, 7.769997e-01, 6.033378e-01, 5.451070e-01, 4.923698e-01,\n", " 3.647155e-01, 2.810775e-01, 1.702471e-01, 2.191389e-01, 3.551019e-01,\n", " 5.156484e-01, 6.221528e-01, 8.869376e-01, 1.008824e+00, 7.652575e-01,\n", " 6.062905e-01], dtype=float32)\n", "Coordinates:\n", " longitude float32 -16.4\n", " latitude float32 28.6\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-25T06:00:00\n", "Attributes:\n", " units: ~\n", " long_name: Dust Aerosol Optical Depth at 550nm
array([5.676746e-04, 5.676746e-04, 1.460314e-03, 2.421856e-03, 5.305767e-03,\n", " 1.128006e-02, 8.077216e-02, 2.031391e-01, 3.358061e-01, 5.017774e-01,\n", " 5.811578e-01, 7.555066e-01, 1.102213e+00, 1.210434e+00, 1.024824e+00,\n", " 9.059588e-01, 7.769997e-01, 6.033378e-01, 5.451070e-01, 4.923698e-01,\n", " 3.647155e-01, 2.810775e-01, 1.702471e-01, 2.191389e-01, 3.551019e-01,\n", " 5.156484e-01, 6.221528e-01, 8.869376e-01, 1.008824e+00, 7.652575e-01,\n", " 6.062905e-01], dtype=float32)
array(-16.4, dtype=float32)
array(28.6, dtype=float32)
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000', '2020-02-24T15:00:00.000000000',\n", " '2020-02-24T18:00:00.000000000', '2020-02-24T21:00:00.000000000',\n", " '2020-02-25T00:00:00.000000000', '2020-02-25T03:00:00.000000000',\n", " '2020-02-25T06:00:00.000000000'], dtype='datetime64[ns]')
\n", " | longitude | \n", "latitude | \n", "duaod550 | \n", "
---|---|---|---|
time | \n", "\n", " | \n", " | \n", " |
2020-02-21 12:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.000568 | \n", "
2020-02-21 15:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.000568 | \n", "
2020-02-21 18:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.001460 | \n", "
2020-02-21 21:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.002422 | \n", "
2020-02-22 00:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.005306 | \n", "
2020-02-22 03:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.011280 | \n", "
2020-02-22 06:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.080772 | \n", "
2020-02-22 09:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.203139 | \n", "
2020-02-22 12:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.335806 | \n", "
2020-02-22 15:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.501777 | \n", "
2020-02-22 18:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.581158 | \n", "
2020-02-22 21:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.755507 | \n", "
2020-02-23 00:00:00 | \n", "-16.4 | \n", "28.6 | \n", "1.102213 | \n", "
2020-02-23 03:00:00 | \n", "-16.4 | \n", "28.6 | \n", "1.210434 | \n", "
2020-02-23 06:00:00 | \n", "-16.4 | \n", "28.6 | \n", "1.024824 | \n", "
2020-02-23 09:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.905959 | \n", "
2020-02-23 12:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.777000 | \n", "
2020-02-23 15:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.603338 | \n", "
2020-02-23 18:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.545107 | \n", "
2020-02-23 21:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.492370 | \n", "
2020-02-24 00:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.364715 | \n", "
2020-02-24 03:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.281078 | \n", "
2020-02-24 06:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.170247 | \n", "
2020-02-24 09:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.219139 | \n", "
2020-02-24 12:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.355102 | \n", "
2020-02-24 15:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.515648 | \n", "
2020-02-24 18:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.622153 | \n", "
2020-02-24 21:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.886938 | \n", "
2020-02-25 00:00:00 | \n", "-16.4 | \n", "28.6 | \n", "1.008824 | \n", "
2020-02-25 03:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.765257 | \n", "
2020-02-25 06:00:00 | \n", "-16.4 | \n", "28.6 | \n", "0.606290 | \n", "
<xarray.Dataset>\n", "Dimensions: (lon: 307, lat: 211, time: 25)\n", "Coordinates:\n", " * lon (lon) float64 -31.0 -30.67 -30.33 -30.0 ... 70.33 70.67 71.0\n", " * lat (lat) float64 -3.0 -2.667 -2.333 -2.0 ... 66.0 66.33 66.67 67.0\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-24T12:0...\n", "Data variables:\n", " od550_dust (time, lat, lon) float32 ...\n", " sconc_dust (time, lat, lon) float32 ...\n", "Attributes:\n", " CDI: Climate Data Interface version 1.5.4 (http://c...\n", " Conventions: CF-1.2\n", " history: Fri Feb 21 23:50:54 2020: cdo remapbil,regular...\n", " _FillValue: -32767.0\n", " missing_value: -32767.0\n", " title: Regional Reanalysis 0.5x0.5 deg NMMB-BSC-Dust ...\n", " History: Fri Feb 21 22:12:45 2020: ncrcat -F -O pout_re...\n", " Grid_type: B-grid: vectors interpolated to scalar positions\n", " Map_Proj: Rotated latitude longitude\n", " NCO: 4.0.8\n", " nco_openmp_thread_number: 1\n", " CDO: Climate Data Operators version 1.5.4 (http://c...
array([-31. , -30.666667, -30.333333, ..., 70.333323, 70.666657,\n", " 70.99999 ])
array([-3. , -2.666667, -2.333333, ..., 66.333326, 66.66666 , 66.999993])
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000'], dtype='datetime64[ns]')
[1619425 values with dtype=float32]
[1619425 values with dtype=float32]
<xarray.DataArray 'od550_dust' (time: 25, lat: 211, lon: 307)>\n", "[1619425 values with dtype=float32]\n", "Coordinates:\n", " * lon (lon) float64 -31.0 -30.67 -30.33 -30.0 ... 70.0 70.33 70.67 71.0\n", " * lat (lat) float64 -3.0 -2.667 -2.333 -2.0 ... 66.0 66.33 66.67 67.0\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-24T12:00:00\n", "Attributes:\n", " long_name: dust optical depth at 550 nm\n", " units: \n", " title: dust optical depth at 550 nm
[1619425 values with dtype=float32]
array([-31. , -30.666667, -30.333333, ..., 70.333323, 70.666657,\n", " 70.99999 ])
array([-3. , -2.666667, -2.333333, ..., 66.333326, 66.66666 , 66.999993])
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000'], dtype='datetime64[ns]')
<xarray.DataArray 'od550_dust' (time: 25)>\n", "array([5.792578e-05, 1.870866e-05, 2.691938e-05, 2.069314e-04, 8.895606e-04,\n", " 1.751463e-03, 9.110953e-03, 5.093248e-02, 2.034178e-01, 3.637045e-01,\n", " 4.338350e-01, 1.095499e+00, 2.165373e+00, 2.052835e+00, 8.611195e-01,\n", " 7.533937e-01, 4.669310e-01, 3.542736e-01, 3.206273e-01, 2.312253e-01,\n", " 1.795649e-01, 2.214468e-01, 4.775718e-01, 7.005243e-01, 1.151538e+00],\n", " dtype=float32)\n", "Coordinates:\n", " lon float64 -16.33\n", " lat float64 28.33\n", " * time (time) datetime64[ns] 2020-02-21T12:00:00 ... 2020-02-24T12:00:00\n", "Attributes:\n", " long_name: dust optical depth at 550 nm\n", " units: \n", " title: dust optical depth at 550 nm
array([5.792578e-05, 1.870866e-05, 2.691938e-05, 2.069314e-04, 8.895606e-04,\n", " 1.751463e-03, 9.110953e-03, 5.093248e-02, 2.034178e-01, 3.637045e-01,\n", " 4.338350e-01, 1.095499e+00, 2.165373e+00, 2.052835e+00, 8.611195e-01,\n", " 7.533937e-01, 4.669310e-01, 3.542736e-01, 3.206273e-01, 2.312253e-01,\n", " 1.795649e-01, 2.214468e-01, 4.775718e-01, 7.005243e-01, 1.151538e+00],\n", " dtype=float32)
array(-16.3333348)
array(28.3333302)
array(['2020-02-21T12:00:00.000000000', '2020-02-21T15:00:00.000000000',\n", " '2020-02-21T18:00:00.000000000', '2020-02-21T21:00:00.000000000',\n", " '2020-02-22T00:00:00.000000000', '2020-02-22T03:00:00.000000000',\n", " '2020-02-22T06:00:00.000000000', '2020-02-22T09:00:00.000000000',\n", " '2020-02-22T12:00:00.000000000', '2020-02-22T15:00:00.000000000',\n", " '2020-02-22T18:00:00.000000000', '2020-02-22T21:00:00.000000000',\n", " '2020-02-23T00:00:00.000000000', '2020-02-23T03:00:00.000000000',\n", " '2020-02-23T06:00:00.000000000', '2020-02-23T09:00:00.000000000',\n", " '2020-02-23T12:00:00.000000000', '2020-02-23T15:00:00.000000000',\n", " '2020-02-23T18:00:00.000000000', '2020-02-23T21:00:00.000000000',\n", " '2020-02-24T00:00:00.000000000', '2020-02-24T03:00:00.000000000',\n", " '2020-02-24T06:00:00.000000000', '2020-02-24T09:00:00.000000000',\n", " '2020-02-24T12:00:00.000000000'], dtype='datetime64[ns]')